Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 346: 123588, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401635

RESUMEN

Environmental contamination is aninsistent concern affecting human health and the ecosystem. Wastewater, containing heavy metals from industrial activities, significantly contributes to escalating water pollution. These metals can bioaccumulate in food chains, posing health risks even at low concentrations. Copper (Cu), an essential micronutrient, becomes toxic at high levels. Activities like mining and fungicide use have led to Copper contamination in soil, water, and sediment beyond safe levels. Copper widely used in industries, demands restraint of heavy metal ion release into wastewater for ecosystem ultrafiltration, membrane filtration, nanofiltration, and reverse osmosis, combat heavy metal pollution, with emphasis on copper.Physical and chemical approaches are efficient, large-scale feasibility may have drawbackssuch as they are costly, result in the production of sludge. In contrast, bioremediation, microbial intervention offers eco-friendly solutions for copper-contaminated soil. Bacteria and fungi facilitate these bioremediation avenues as cost-effective alternatives. This review article emphasizes on physical, chemical, and biological methods for removal of copper from the wastewater as well asdetailing microorganism's mechanisms to mobilize or immobilize copper in wastewater and soil.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Humanos , Cobre/análisis , Ecosistema , Aguas Residuales , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Suelo , Biodegradación Ambiental
2.
Artículo en Inglés | MEDLINE | ID: mdl-37930578

RESUMEN

The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.

3.
Mikrochim Acta ; 190(11): 438, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843728

RESUMEN

An aptamer sensor has been developed utilizing a dual-mode and stimuli-responsive strategy for quantitative detection of AßO (amyloid-beta oligomers) through simultaneous electrochemical and fluorescence detection. To achieve this, we employed UIO-66-NH2 as a carrier container to load MB (Methylene Blue), and Fe3O4 MNPs (iron oxide magnetic nanoparticles) with aptamer (ssDNA-Fe3O4 MNPs) fixed on their surface for biological gating. The ssDNA-Fe3O4 MNPs were immobilized onto the surface of UIO-66-NH2 through hydrogen bonding between the aptamer and the -NH2 group on the surface of UIO-66-NH2, thereby encapsulating MB and forming ssDNA-Fe3O4@MB@UIO-66-NH2. During the detection of AßO, the aptamer selectively reacted with AßO to form the AßO-ssDNA-Fe3O4 complex, leading to its detachment from the surface of UIO-66-NH2. This detachment facilitated the release of MB, enabling its electrochemical detection. Simultaneously, the AßO-ssDNA-Fe3O4 complex was efficiently collected and separated using a magnet after leaving the container's surface. Furthermore, the addition of NaOH facilitated the disconnection of biotin modifications at the 3' end of the aptamer from the avidin modifications on the Fe3O4 MNPs. Consequently, the aptamer detached from the surface of Fe3O4 MNPs, resulting in the restoration of fluorescence intensity of FAM (fluorescein-5'-carboxamidite) modified at its 5' end for fluorescence detection. The dual-mode sensor exhibited significantly enhanced differential pulse voltammetry signals and fluorescence intensity compared to those in the absence of AßO. The sensor demonstrated a wide detection range of 10 fM to 10 µM, with a detection limit of 3.4 fM. It displayed excellent performance in detecting actual samples and holds promising prospects for early diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Nucleótidos , Humanos , Péptidos beta-Amiloides , Fluorescencia , Enfermedad de Alzheimer/diagnóstico
4.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500681

RESUMEN

Doxorubicin (DOXO) is an antineoplastic drug that is used extensively in managing multiple cancer types. However, DOXO-induced cardiotoxicity is a limiting factor for its widespread use and considerably affects patients' quality of life. Farnesol (FSN) is a sesquiterpene with antioxidant, anti-inflammatory, and anti-tumor properties. Thus, the current study explored the cardioprotective effect of FSN against DOXO-induced cardiotoxicity. In this study, male Wistar rats were randomly divided into five groups (n = 7) and treated for 14 days. Group I (Control): normal saline, p.o. daily for 14 days; Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 14 days; Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group V (Standard): nifedipine 10 mg/kg, p.o. daily for 14 days + DOXO similar to Group II. At the end of the study, animals were weighed, blood was collected, and heart-weight was measured. The cardiac tissue was used to estimate biochemical markers and for histopathological studies. The observed results revealed that the FSN-treated group rats showed decrease in heart weight and heart weight/body weight ratio, reversed the oxidative stress, cardiac-specific injury markers, proinflammatory and proapoptotic markers and histopathological aberrations towards normal, and showed cardioprotection. In summary, the FSN reduces cardiac injuries caused by DOXO via its antioxidant, anti-inflammatory, and anti-apoptotic potential. However, more detailed mechanism-based studies are needed to bring this drug into clinical use.


Asunto(s)
Farnesol , Calidad de Vida , Masculino , Ratas , Animales , Ratas Wistar , Farnesol/farmacología , Farnesol/uso terapéutico , Miocitos Cardíacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Muerte Celular , Estrés Oxidativo , Inflamación/metabolismo , Antioxidantes/metabolismo
5.
J Funct Biomater ; 13(4)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36412844

RESUMEN

The main objective of the proposed work was the development of a thermosensitive gel (containing clove and tea tree oil) for the management of vaginal candidiasis. Both oils have been recommended to be used separately in a topical formulation for vaginal candidiasis. Incorporating two natural ingredients (clove and tea tree oil) into a product give it a broad antimicrobial spectrum and analgesic properties. The two oils were mixed together at a 3:1 ratio and converted into o/w nanoemulsion using the aqueous titration method and plotting pseudo ternary phase diagrams. Further transformations resulted in a gel with thermosensitive properties. To determine the final formulation's potential for further clinical investigation, in vitro analyses (viscosity measurement, MTT assay, mucoadhesion, ex vivo permeation) and in vivo studies (fungal clearance kinetics in an animal model) were conducted. The current effort leveraged the potential of tea tree and clove oils as formulation ingredients and natural therapeutic agents for vaginal infections. Its synergy generated a stable and effective thermosensitive gel that can be utilized for recurrent candidiasis and other infections.

6.
Environ Res ; 215(Pt 1): 114257, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36084676

RESUMEN

In the present work we synthesize nickel oxide nanoparticles (NiO NPs) using Rhododendron arboretum (flower) (RNi), Tinospora cordifolia (stems) (GNi), Corylus jacquemontii (seeds) (CNi), and Nardostachys jatamansi (roots) (NNi) extracts by co-precipitation method. The synthesized NiO NPs were characterized in detail in terms of their morphological, crystalline nature, structural and antiproliferative activity against rat skeletal myoblast (L-6) cell lines. Morphological studies confirmed the formation of nanoparticles, while the structural and compositional characterization revealed the well-crystallinity and high purity of the synthesized nanoparticles. For biological applications and cytotoxicity examinations of the synthesized NPs, the rat skeletal myoblast (L-6) cell lines were subjected to study. By detailed cytotoxic investigations, it was observed that among the four kinds of NiO NPs prepared through different plant extracts, the Tinospora cordifolia (stems) showed strong antiproliferative activity against rat skeletal myoblast (L-6) cell lines and the calculated IC50 was 1.671 mg/mL. The observed antiproliferative activity towards different NiO NPs were in the order of GNi > NNi > RNi > CNi. The present studies demonstrate that simply synthesized NiO can efficiently be used as antiproliferative agents.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Nanopartículas , Animales , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Níquel/metabolismo , Níquel/toxicidad , Extractos Vegetales/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
7.
Environ Res ; 212(Pt B): 113337, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35469857

RESUMEN

Herein, we report a bacteria-based strategy as an efficient, reasonable, benign, and promising methodology for remediating heavy metals fed waterbodies. The contemporary study deals with isolating, screening, and characterizing heavy metal resistive bacteria from metal-rich sites. The transcriptome analysis reveals the identity of the isolated species as Bacillus pumilus and Bacillus cereus. Batch studies put forth the bioremoval results in designed conditions of different pH, concentration, dose, and time. The mechanistic actions are drawn using complementary techniques such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The theory of surface adsorption of lead (Pb(II)) and nickel (Ni(II)) is further fostered by the application of adsorption isotherms. The conducted studies establish the bacterial morphological stratagems and multifarious biochemical approaches for countering metallic ions of Pb(II) and Ni(II). The exhibition of significant removal results by the isolated bacterial strains in simulated water samples with remarkable proliferation rates has opened up its favorability for industrial platforms.


Asunto(s)
Bacillus pumilus , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Bacillus cereus/genética , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Metales Pesados/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química
8.
Proteomics Clin Appl ; 13(5): e1900029, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31282103

RESUMEN

BACKGROUND: The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN: The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS: The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS: The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Tamoxifeno/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Humanos , Células MCF-7 , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...